Bayesian probability updates using sampling/importance resampling: Applications in nuclear theory

نویسندگان

چکیده

We review an established Bayesian sampling method called sampling/importance resampling and highlight situations in nuclear theory when it can be particularly useful. To this end we both analyse a toy problem demonstrate realistic applications of importance to infer the posterior distribution for parameters $\Delta$NNLO interaction model based on chiral effective field estimate probability target observables. The limitation is also showcased extreme where breaks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Bayesian Probability Theory in Astrophysics

Bayesian Inference is a powerful approach to data analysis that is based almost entirely on probability theory. In this approach, probabilities model uncertainty rather than randomness or variability. This thesis is composed of a series of papers that have been published in various astronomical journals during the years 2005-2008. The unifying thread running through the papers is the use of Bay...

متن کامل

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

Exponential Model Selection (in NMR) Using Bayesian Probability Theory

In a companion article in this issue, parameter estimation using exponential models was addressed when the form of the model is known (i.e., when the number of exponentials and whether a constant offset is present are known). In this article, we apply Bayesian probability theory to the problem of determining the functional form of the model. The calculations are implemented using Markov chain M...

متن کامل

Exponential Parameter Estimation (in NMR) Using Bayesian Probability Theory

Data modeled as sums of exponentials arise in many areas of science and are common in NMR. However, exponential parameter estimation is fundamentally a difficult problem. In this article, Bayesian probability theory is used to obtain optimal exponential parameter estimates. The calculations are implemented using Markov chain Monte Carlo with simulated annealing to draw samples from the joint po...

متن کامل

Renal DCE-MRI Model Selection Using Bayesian Probability Theory

Corresponding Author: Joel R. Garbow Biomedical MR Laboratory, Campus Box 8227, Washington University School of Medicine, Room 2313, 4525 Scott Ave., St. Louis, MO 63110; E-mail: [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Physics

سال: 2022

ISSN: ['2296-424X']

DOI: https://doi.org/10.3389/fphy.2022.1058809